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ABSTRACT

Image quality assessment (IQA) is currently an important re-
search topic. In fact, the varying viewing distance between
audiences and the display seriously affect the IQA accuracy,
which has been largely overlooked. To this end, in this paper
we take into account the image size and viewing distance as
well as the preferential activation of V1 cells by vertical and
horizontal contours, and thereby propose an adaptive frequen-
cy selection (AFS) model to preprocess input visual signals
before IQA metrics are used. Our algorithm works by first
applying Fourier Transform (FT) to the reference and distort-
ed images to approximate the low-pass behavior of the human
visual system, then extracting proper amount of low frequen-
cy components and partial high frequency components corre-
sponding to vertical and horizontal directions, and finally re-
constructing spatial images with the inverse FT. We validate
the performance of AFS based PSNR and SSIM on the relat-
ed LIVE, Toyama and IVC databases with clearly specified
viewing conditions. Experimental results and comparative s-
tudies show the effectiveness of the proposed model.

Index Terms— Image quality assessment (IQA), Fourier
transform (FT), image size, viewing distance, human visual
system (HVS), V1 cells

1. INTRODUCTION

With the booming of digital imaging and signal processing
technologies, image quality assessment (IQA) has become in-
creasingly important in many practical applications, such as
image enhancement [1]-[2], compression [3], restoration [4]
and etc. In general, IQA can be divided into two categories:
subjective and objective assessments. Subjective assessment
is often regarded as the ultimate quality criterion, but it is
greatly expensive, time-consuming and impractical for real-
time systems. As a consequence, objective metrics have
become an intensely research topic during the last decade.
Based on the availability of the original image, objective IQA
can be further divided into three types, namely full-reference
(FR), reduced-reference (RR), and no-reference (NR) IQA.
In this work, we focus on FR IQA approaches.

The vast majority of IQA methods were designed for the
FR scenario, and most of them try to predict the perceptual
difference between an original image and its distorted coun-
terpart to predict the commonly encountered distortion types,
e.g. compression, noise and blurring. Classical mean squared
error (MSE) and peak signal-to-noise ratio (PSNR) measure
the difference between the original and distorted images, but
unfortunately, it has been widely recognized that MSE and P-
SNR are not well correlated with human judgment of quality,
i.e. the mean opinion score (MOS) [5]. Therefore, numerous
FR IQA methods have been developed for better performance.
Up to now, one of the most popular methods is perhaps the
structural similarity (SSIM) index [6], which combines three
factors which is separately used to measure the loss of cor-
relation, luminance distortion and contrast distortion. SSIM
turned out to be more effective than PSNR on some existing
image quality databases [7]-[9].

In our early work, it has been revealed that the image size
and viewing distance have considerable impacts on the IQA
performance [10]. Generally, as the viewing distance increas-
es, human eyes capture fewer image details. On this base,
we recently proposed an effective self-adaptive scale trans-
form (SAST) model [10] to estimate the optimal scale in the
spatial domain. Realizing the fact that images in frequency
domain are more suitable for post-filtering, so we expand the
idea of scale transform into the frequency domain based on
the reasonable hypothesis that more frequency loss occurs as
the viewing distance becomes farther.

The filtering process of human eyes can be assumed as
a low-pass filter due to limited number of rods and the optic
abbrevation [11]. On the other hand, previous studies on nat-
ural scene statistics have revealed that natural images tend to
have more structures in the horizontal and vertical directions
[12]. This paper therefore proposes a simple yet effective fil-
tering method by adaptively selecting proper amount of low
frequency components in the Fourier Transform (FT) domain.
In brief, we adopt an adaptive star-shaped 0-1 mask to extract
the valid low-frequency components from the FT transformed
images, and then calculate the quality score using mainstream
IQA methods (PSNR and SSIM are used in this paper) on the
inversely transformed images.

This paper proceeds as follows. In Section 2, we first re-
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Fig. 1: (a)-(d) are the the original image, the JPEG, the noise and the blur distorted images of “sculpture”, and (e)-(h) are respectively the
spectrograms of (a)-(d).

view the existing scale transform models, and then put for-
ward a new model by selecting suitable low and high frequen-
cy components from the input reference and distorted images
according to the preferential activation of V1 cells and view-
ing conditions. Experimental results and comparative studies
are given in Section 3. Section 4 concludes this paper.

2. THE PREPROCESSING STAGE

2.1. Introduction of PSNR/SSIM

A booming number of FR IQA algorithms have been put for-
ward over the years, in this paper, we only adopt the most
traditional PSNR and the benchmark SSIM. For the original

Fig. 2: The star-shaped binary mask for frequency selection.

image x and the distorted image y, PSNR is estimated by av-
eraging the squared intensity differences of the reference and
distorted images. It is simple to calculate, have clear physical
meaning, i.e.,

PSNR = 10× log10((2n−1)2/MSE) (1)

where n is the bit number of every sampling value. MSE is
the mean square error between x and y.

SSIM index is a combination of luminance, contrast and
structural similarity. The three components between two lo-
cal image patches of the reference and distorted images are
defined as

l(x,y) =
2µxµy +C1

µ2
x +µ2

y +C1
(2)

c(x,y) =
2σxσy +C2

σ2
x +σ2

y +C2
(3)

s(x,y) =
σxy +C3

σxσy +C3
(4)

where C1, C2 and C3 = C2/2 are constant small numbers to
avoid instability when µ2

x +µ2
y , σ2

x +σ2
y , σxσy are very close

to zero.
Finally, the aforementioned three comparisons are com-

bined and the resulting similarity measure between the refer-
ence and distorted images is defined as

SSIM(x,y) = l(x,y) · c(x,y) · s(x,y)

=
(2µxµy +C1)(2σxy+C2)

(µ2
x +µ2

y +C1)(σ2
x +σ2

y +C2)
. (5)

The overall image quality is evaluated by averaging SSIM.

2014 Sixth International Workshop on Quality of Multimedia Experience (QoMEX)

190



(a) (b)

(c) (d)

Fig. 3: (a) is the white noise contaminated image of “stream” from
the LIVE database, (b) is the Fourier transform of (a), (c) is the fre-
quency components selected by the proposed AFS model, (d) is the
inverse transformed image from (c).

2.2. The previous preprocessing models

To approximate the real viewing conditions under different
viewing distances, a down-sample model Zα is provided for
preprocessing images before using SSIM [13], so as to evalu-
ate images viewed from a specific distance:

Zα = max(1,round(HI/256)) (6)

where HI is the image height. However, due to the usage of
the rounding operation, the resultant scale parameter is un-
stable with increased image sizes and therefore brings about
only limited performance gain.

To this end, we recently proposed a simple and empirical
self-adaptive down-sample scale ZS [10] in the spatial domain
using the concept of human visual angle:

ZS =

√
HI ·WI

HV ·WV

=

√
1

4 tan(
θHV

2 ) · tan(
θWV

2 )
· (HI

D
)2 ·WI

HI
(7)

where WI is the image width. HV and WV are the visual height
and width individually. θHV (≈ 40o) and θWV (≈ 50o) are the
actual visual angle (i.e. angle of gaze) of human eyes, which
is assumed to be one third of total visual angle.

2.3. Proposed AFS model

The scale transforms proposed in equations (6) and (7) both
work in the spatial domain. On the other hand, frequency

Fig. 4: The block of the AFS model.

domain processing has been an important tool for image pro-
cessing due to its efficiency and effectiveness. So, in this pa-
per, we will propose an adaptive scale transform in the fre-
quency domain for image processing. Particularly, we use the
fast Fourier transform (FFT) to firstly turn the images into the
frequency domain:

f (x) =
I−1

∑
i=0

J−1

∑
j=0

x(i, j)W k1i
I W k2 j

J

0≤ k1 ≤ I−1 0≤ k2 ≤ J−1. (8)

As shown in Fig. 1, most energies are concentrated on
low frequencies in those transformed images. One exception
is the white noise contaminated images which have spreading
frequency components (but as can be seen, the image energy
is still well concentrated).

To mimic the low-pass filtering property of human eye-
s, we use a 2D binary mask to extract the central section of
the 2D frequency plane. As discussed, to better protect those
vertical and horizontal frequencies, which correspond to im-
portant image structures as manifested in Fig. 1 (e)-(h), we
use a star-shaped pattern in the mask as shown in Fig. 2. The
frequencies located in the white part are extracted.

Considering that as viewing distance increases, the visible
high frequency image structures reduce, we design the adap-
tive binary mask as:

HM = max(1,
a1

Da2 +a3
)− 1

2
×HI (9)

where D is the viewing distance, and a = {a1, a2, a3} is a
set of tuning parameters. The width of the star is WM , and
WM/HM is set to be the same as the image aspect ratio, i.e.
WI/HI . In addition, the angles of the mask are αM and βM
respectively.

After extracting suitable amount of low and partial high
frequency components from the Fourier domain, we trans-
form the image back to the spatial domain. And this AFS
postfiltering process is illustrated in Fig. 3. (a) and (b) are
the original and its Fourier transformed images respectively.
Then the star-shaped mask is utilized in (c) to extract corre-
sponding frequency, and (d) is the inverse transformed image
of (c).
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Table 1: PLCC, SROCC and RMSE results (after nonlinear regression) of PSNR, PSNRα, MS-PSNR, PSNRS, PSNRFS, SSIM,
SSIMα, MS-SSIM, SSIMS, SSIMFS, IGM and GMSD on the LIVE, IVC and Toyama databases

LIVE database [7] IVC database [8] Toyama database [9]
Metrics PLCC SROCC RMSE PLCC SROCC RMSE PLCC SROCC RMSE
PSNR 0.8701 0.8756 13.4685 0.7192 0.6886 0.8465 0.6355 0.6132 0.9662
PSNRα [13] 0.8995 0.9031 11.9398 0.8791 0.8721 0.5808 0.7654 0.7583 0.8053
MS-PSNR [15] 0.9071 0.9110 11.5030 0.8388 0.8340 0.6634 0.7522 0.7411 0.8246
PSNRS [10] 0.9134 0.9160 11.1209 0.8953 0.8889 0.5428 0.8343 0.8272 0.6898
PSNRFS 0.9189 0.9208 10.7780 0.9035 0.8974 0.5221 0.8280 0.8237 0.7018
SSIM [6] 0.9014 0.9104 11.8323 0.7924 0.7788 0.7431 0.7978 0.7870 0.7545
SSIMα [13] 0.9300 0.9391 10.0439 0.9117 0.9017 0.5007 0.8877 0.8794 0.5762
MS-SSIM [15] 0.9338 0.9448 9.7788 0.8931 0.8846 0.5480 0.8926 0.8870 0.5641
SSIMS [10] 0.9306 0.9446 10.0020 0.9042 0.8905 0.5203 0.9072 0.9048 0.5265
SSIMFS 0.9383 0.9578 9.4514 0.9195 0.9118 0.4790 0.9011 0.8977 0.5425
IGM [16] 0.9565 0.9581 7.9686 0.9128 0.9025 0.4976 0.8708 0.8654 0.6152
GMSD [17] 0.9568 0.9603 7.9447 0.8971 0.9148 0.0209 0.8576 0.8528 0.6437

The AFS model processed images are then fed into the
IQA metrics of PSNR/SSIM as:

PSNRFS(x,y) = PSNR(x′,y′) (10)

SSIMFS(x,y) = SSIM(x′,y′) (11)

where
x′ = f−1( f (x)×M) (12)

y′ = f−1( f (y)×M) (13)

where x and y are the original and distorted images respec-
tively. M is the star-shaped binary mask with the same size
of x and y. f represents the Fourier transform function, and
f−1 is the inverse Fourier transform function. The detail of
the AFS model is displayed in Fig. 4.

Table 2: Specifications of LIVE, IVC and Toyama databases.

Dataset LIVE IVC Toyama

768×512, 480×720,
Image size 640×512, 632×505,
(WI×HI) 634×505, 618×453, 512×512 768×512

610×488, 627×482,
634×438

D / HI 3∼3.75 4 6

No. 779 185 168

3. EXPERIMENTAL RESULTS

Three image databases, including LIVE [7], IVC [8] and
Toyama [9], are utilized in this paper as testing beds. We
chose those databases among many candidates because of
their specific image sizes, viewing distances/image heights.
A four-parameter logistic function is chosen to fit the scores
of our method to subjective scores [14]

Quality(z) =
β1−β2

1+ exp(−(z−β3)/β4)
+β2 (14)

where z is the input score, Quality(z) is the mapped score,
and β1 to β4 are free parameters to be determined during the
curve fitting process. According to the suggestion provid-
ed by VQEG [14], we then use three evaluation metrics to
compare the performance against the MOS/DMOS scores: 1)
Pearson linear correlation coefficient (PLCC), which is em-
ployed to assess the prediction accuracy; 2) Spearman rank-
ordered correlation coefficient (SROCC), which aims to e-
valuate prediction monotonicity; 3) root mean-squared error
(RMSE), which measures how well an algorithm’s prediction
correlates with the raw opinion scores.

The optimal model parameters of the proposed AFS mod-
el were obtained on LIVE database, and validated on IVC
and Toyama databases. To carefully compare the perfor-
mances of our algorithm and some existing related metrics
(based on benchmark algorithms PSNR/SSIM): PSNRα/MS-
PSNR/PSNRS, SSIMα/MS-SSIM/SSIMS as tabulated in Table
1, we can easily find that the proposed PSNRFS and SSIMFS

methods have achieved promising performance on the three
databases. Furthermore, our results can also be comparable
to the state-of-the-art internal generative mechanism (IGM)
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Fig. 5: Scatter plots of DMOS vs. PSNR/PSNRα/MS-PSNR/PSNRS/PSNRFS, SSIM/SSIMα/MS-SSIM/SSIMS/SSIMFS on the LIVE database.
The red lines are curves fitted with the logistic function and the back dash lines are 95% confidence intervals.

Table 3: Database size-weighted average performance of IQA met-
rics over three databases.

Metrics PLCC SROCC RMSE

PSNR 0.8106 0.8061 9.5503
PSNRα 0.8763 0.8765 8.4310
MS-PSNR 0.8729 0.8732 8.1467
PSNRS 0.8987 0.8984 7.8441
PSNRFS 0.9029 0.9026 7.6065

SSIM 0.8682 0.8706 8.3760
SSIMα 0.9207 0.9241 7.0792
MS-SSIM 0.9210 0.9264 6.9027
SSIMS 0.9228 0.9299 7.0462
SSIMFS 0.9297 0.9414 6.6629

IGM 0.9366 0.9353 5.6563
GMSD 0.9323 0.9369 5.5662

[16], and the newest gradient magnitude similarity deviation
(GMSD) [17] metric. The database size-weighted average
performance of IQA metrics over three databases and the
rates of increase of the metrics over PSNR/SSIM are tabulat-
ed in Table 3 and Table 4 respectively. Figure. 5 shows the
scatter plots of all metrics compared vs. DMOS on the largest
LIVE database which present favorable convergency. Figure.
6 and 7 display the well performed PSNR/MS-PSNR/PSNRFS,
SSIM/MS-SSIM/SSIMFS on IVC and Toyama databases.

4. CONCLUSION

This paper proposes a simple yet effective adaptive frequen-
cy selection (AFS) model to improve performance of image
quality metrics. The AFS model approximates the low-pass

Table 4: The rates of increase of PSNRα, MS-PSNR, PSNRS, P-
SNRFS over PSNR, and SSIMα, MS-SSIM, SSIMS, SSIMFS over S-
SIM on the database-weighted average results.

Metrics PLCC SROCC RMSE

PSNR - - -
PSNRα 8.11% 8.73% 11.72%
MS-PSNR 7.69% 8.32% 14.79%
PSNRS 10.87% 11.45% 17.87%
PSNRFS 11.39% 11.97% 20.35%

SSIM - - -
SSIMα 6.05% 6.15% 15.48%
MS-SSIM 6.08% 6.41% 17.59%
SSIMS 6.29% 6.81% 15.88%
SSIMFS 7.08% 8.13% 20.45%

filtering process of human eyes with proper frequency protec-
tion for the vertical and horizontal directions. Experimental
results on LIVE, IVC and Toyama databases, which have def-
inite records of image sizes and viewing distances, are provid-
ed to confirm that both the AFS based methods PSNRFS and
SSIMFS outperform existing scale transform models, such as
the multi-scale model and SAST model, and is even match-
able with that state of the art IGM and GMSD methods.
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Fig. 6: Scatter plots of MOS vs. PSNR/MS-PSNR/PSNRFS,
SSIM/MS-SSIM/SSIMFS on IVC database.
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